Abstract

In this paper a closed-loop interrogation technique for multi-point temperature measurement using fiber Bragg gratings (FBG) is presented. The technique uses a broadband light source and $n$ tunable FBGs to interrogate an array of $n$ FBGs sensors placed along the optical fiber. Each center wavelength of the tunable FBGs is matched with the center wavelength of one FBG sensor placed in the array. The light source directly illuminates the sensor array, so that all the light reflected from the FBGs enters in the optical circuit through an optical circulator and the reflected spectrum of each sensing FBG illuminates a matched tunable FBG. Because the current generated by the photodiode is proportional to the convolution between the two FBGs profiles (the sensor FBG and the tunable FBG), by controlling the value of the convolution at a fixed value, the center wavelengths of the two FBGs are kept spaced by a constant value. Therefore, the temperature of the FBG sensor can be associated with the temperature of the tunable FBG. A two channel prototype was constructed to validate the technique and a very high resolution of $\pm 0.001^{\,\circ}$ C was obtained.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription