Abstract

A one-dimensional subwavelength grating structure is used to enhance the emission from Si nanocrystals embedded in silicon-rich nitride film. The enhancement is attributed to guided-mode resonance effects supported by subwavelength gratings. Both the reflection and photoluminescence experiments are presented aimed at acquiring guided mode spectrum and the emission enhancement factor. A ten-fold enhancement of the fluorescence emission by Si nanocrystals is obtained at the low group velocity band edge of subwavelength gratings. Our results indicate that silicon-rich nitride is a suitable material for the fabrication of high efficiency light emitting structures. The versatility of silicon-rich nitride material system has a far-reaching significance for the realization of optically active complementary metal oxide semiconductor devices.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription