Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 23,
  • pp. 4026-4034
  • (2014)

Extrinsic Fabry–Pérot Underwater Acoustic Sensor Based on Micromachined Center-Embossed Diaphragm

Not Accessible

Your library or personal account may give you access

Abstract

Most research works emphasized on the acoustic sensor miniaturization are not optimized for applications under high surrounding pressure. For underwater acoustic sensing, measuring the small acoustic pressure from the huge hydrostatic pressure makes the design of the sensor challenging. In this paper, we attempt to solve the problem by adopting a center-embossed diaphragm as the sensitive structure. The deformation angular error is defined to evaluate the optical performance degradation and the optical sensitivity reduction under hydrostatic pressure. Simulations indicate that the central embossment is beneficial to maintain optics-related properties, although the structural sensitivity is reduced. Then, the diaphragm design guideline for underwater acoustic sensing is regulated. An optical fiber extrinsic Fabry–Pérot interferometer probe based on the diaphragm, which was micromachined by double-side etching of the silicon on insulator, was designed and assembled. Experimental results show that the interferometric fringe preserves similar shapes at any tested depth from 0 (in air) to 50 cm. The recovered signal detected by the sensor coincides well with the corresponding transmitted signal. The pressure sensitivity response is flat in frequency range from 10 to 2 kHz, of which value is about $-$ 154.6 dB re. 1/ $\mu$ Pa. It agrees well with the theoretical predication. These results demonstrated that the designed sensor according to the guideline can be used as an underwater acoustic sensor. Moreover, the sensor has potential applications in smart unmanned platforms and swiftly deployable arrays.

© 2014 IEEE

PDF Article
More Like This
Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing

Wenjun Ni, Ping Lu, Xin Fu, Wei Zhang, Perry Ping Shum, Handong Sun, Chunyong Yang, Deming Liu, and Jiangshan Zhang
Opt. Express 26(16) 20758-20767 (2018)

Sensitivity enhanced fiber optic hydrophone based on an extrinsic Fabry-Perot interferometer for low-frequency underwater acoustic sensing

Wanze Xiong, Qian Shu, Ping Lu, Wanjin Zhang, Zhiyuan Qu, Deming Liu, and Jiangshan Zhang
Opt. Express 30(6) 9307-9320 (2022)

Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing

Xin Fu, Ping Lu, Jin Zhang, Zhiyuan Qu, Wanjin Zhang, Yujian Li, Peng Hu, Wei Yan, Wenjun Ni, Deming Liu, and Jiangshan Zhang
Opt. Express 27(17) 24300-24310 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.