Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 23,
  • pp. 3998-4003
  • (2014)

Magnetic Field Tunability of Square Tapered No-Core Fibers Based on Magnetic Fluid

Not Accessible

Your library or personal account may give you access

Abstract

A magnetic-field-tuned photonics device based on magnetic fluid (MF) and a square tapered no-core fiber (NCF) sandwiched between two single-mode fibers (SMFs) has been demonstrated experimentally and theoretically. The enhanced evanescent field effect in the NCF is achieved by tapering the square NCF utilizing a fusion splicer. The spectral dependence of the proposed device on the applied magnetic-field intensity has been investigated. The results indicate that the multimode interference spectrum exhibits a blue-shift with the increment of the magnetic-field intensity. A maximal sensitivity of −18.7 pm/Oe is obtained for a magnetic field strength ranging from 25 to 450 Oe. The proposed tunable device has several advantages, including low cost, ease of fabrication, simple and compact structure, and high sensitivity. Therefore, the magnetic-field-tuned square tapered NCF is expected to find potential applications in the fields of optical fiber sensors, as well as fiber communications.

© 2014 IEEE

PDF Article
More Like This
Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids

Yinping Miao, Xixi Ma, Jixuan Wu, Binbin Song, Hao Zhang, Kailiang Zhang, Bo Liu, and Jianquan Yao
Opt. Lett. 40(16) 3905-3908 (2015)

All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid

Junying Zhang, Xueguang Qiao, Hangzhou Yang, Ruohui Wang, Qiangzhou Rong, Kok-Sing Lim, and Harith Ahmad
Appl. Opt. 56(2) 200-204 (2017)

Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing

Shaohua Dong, Shengli Pu, and Haotian Wang
Opt. Express 22(16) 19108-19116 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved