Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 23,
  • pp. 3942-3950
  • (2014)

Modeling of Nonlinear Signal Distortion in Fiber-Optic Networks

Not Accessible

Your library or personal account may give you access

Abstract

A low-complexity model for signal quality prediction in a nonlinear fiber-optic network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation and routing in large-scale optical networks applying flexible-grid wavelength-division multiplexing.

© 2014 IEEE

PDF Article
More Like This
Resource Allocation for Flexible-Grid Optical Networks With Nonlinear Channel Model [Invited]

Li Yan, Erik Agrell, Henk Wymeersch, and Maïté Brandt-Pearce
J. Opt. Commun. Netw. 7(11) B101-B108 (2015)

Modeling and mitigation of fiber nonlinearity in wideband optical signal transmission [Invited]

Daniel Semrau, Eric Sillekens, Polina Bayvel, and Robert I. Killey
J. Opt. Commun. Netw. 12(6) C68-C76 (2020)

Load-Aware Nonlinearity Estimation for Elastic Optical Network Resource Optimization and Management

Rui Wang, Sarvesh Bidkar, Fanchao Meng, Reza Nejabati, and Dimitra Simeonidou
J. Opt. Commun. Netw. 11(5) 164-178 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.