Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 21,
  • pp. 3597-3601
  • (2014)

A Graphene-Based Hybrid Plasmonic Waveguide With Ultra-Deep Subwavelength Confinement

Not Accessible

Your library or personal account may give you access

Abstract

Reduction of propagation loss of terahertz graphene plasmon can be made by increasing the chemical potential of graphene layer, but at the cost of significantly increased modal area, which fundamentally limits the packing density on a chip. By utilizing the strong coupling between the dielectric waveguide and plasmonic modes, we propose hybrid plasmonic terahertz waveguides that not only significantly suppress the mode field confinement, but also maintain a compact modal size. A typical propagation length is 127 μm, and optical field is confined into an ultra-small area of approximately 32.6 μm2 at 3 THz. This structure also exhibits ultra-low crosstalk, which shows great promise for constructing various functional devices in future terahertz integrated circuits.

© 2014 IEEE

PDF Article
More Like This
Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement

Xueqing He, Tigang Ning, Shaohua Lu, Jingjing Zheng, Jing Li, Rujiang Li, and Li Pei
Opt. Express 26(8) 10109-10118 (2018)

Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement

Yusheng Bian, Zheng Zheng, Ya Liu, Jiansheng Liu, Jinsong Zhu, and Tao Zhou
Opt. Express 19(23) 22417-22422 (2011)

Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement

Youqiao Ma, Gerald Farrell, Yuliya Semenova, and Qiang Wu
Opt. Lett. 39(4) 973-976 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved