Abstract

We propose an on-chip optical architecture to support massive parallel communication among high-performance spiking laser neurons. Designs for a network protocol, computational element, and waveguide medium are described, and novel methods are considered in relation to prior research in optical on-chip networking, neural networking, and computing. Broadcast-and-weight is a new approach for combining neuromorphic processing and optoelectronic physics, a pairing that is found to yield a variety of advantageous features. We discuss properties and design considerations for architectures for scalable wavelength reuse and biologically relevant organizational capabilities, in addition to aspects of practical feasibility. Given recent developments commercial photonic systems integration and neuromorphic computing, we suggest that a novel approach to photonic spike processing represents a promising opportunity in unconventional computing.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription