Abstract

This paper presents a hardware-efficient carrier phase estimator with high-linewidth tolerance for 16-QAM optical coherent systems. The laser phase noise is estimated using quaternary phase-shift keying (QPSK) partitioning complemented with a low complexity angle-based barycenter approximation as opposed to the classical Viterbi and Viterbi algorithm. The various stages necessary for partitioning and removing the modulation on the received symbols for carrier phase recovery are presented. We show that the phase offset in the middle ring for a 16-QAM constellation can be removed through a simple comparison with the symbols lying on the inner and outer rings of the constellation thus enabling all the symbols to be efficiently utilized for carrier phase recovery. We assess the performance of different filter structures for 16-QAM with filter half width 8 and 16. Simulation results demonstrate that combined linewidth symbol duration product $\Delta \nu \cdot T_s$ of $10^{-4}$ is tolerable at the target BER of $10^{-2}$ and $10^{-3}$ when using the barycenter algorithm. Finally, carrier phase recovery in a 16-QAM experiment is investigated to validate the performance of the proposed algorithm.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription