Abstract

High degree of heterogeneity of future optical networks, stemming from provisioning of services with different quality-of-transmission requirements, and transmission links employing mixed modulation formats or switching techniques, will pose a challenge for the control and management of the network. The incorporation of cognitive techniques can help to optimize a network by employing mechanisms that can observe, act, learn and improve network performance, taking into account end-to-end goals. The EU project CHRON: Cognitive Heterogeneous Reconfigurable Optical Network proposes a strategy to efficiently control the network by implementing cognition. In this paper we present a survey of different techniques developed throughout the course of the project to apply cognition in future optical networks.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription