Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 1,
  • pp. 46-54
  • (2014)

Single-Polarization Coupler Based on Air-Core Photonic Bandgap Fibers and Implications for Resonant Fiber Optic Gyro

Not Accessible

Your library or personal account may give you access

Abstract

A single-polarization (SP) coupler based on air-core photonic bandgap fibers (PBFs) is proposed and numerically simulated. The physical mechanism is the decoupling phenomenon occurring at special separations between the cores of the dual-core PBFs called decoupling points. The coupling length of one polarization in the coupler tends to be infinite while the coupling length of other polarization remains in normal level. The coupling ratio for the primary polarization can vary by adjusting the length of the coupler since the other polarization is always decoupled out at any length of the coupler. When this novel SP coupler is incorporated into a PBFs based fiber ring resonator, its unique polarization property is theoretically simulated. In this full-PBFs configuration, the SP coupler functions as the power splitter and the polarizer simultaneously. By the finite element method, the feasibility of the SP coupler to filter the secondary eigenstate of polarization (ESOP) propagating in the resonator is proved. And the performance of the SP coupler to suppress the temperature-related polarization fluctuation in the resonant fiber optic gyro is promised to be more significant to the in-line polarizer integrating in the resonator. Furthermore, the mechanism of decoupling phenomenon in the SP coupler and the influence of polarization-axis angular misalignment are discussed. In conclusion, an optimized SP coupler can couple the primary ESOP properly, and a polarization extinct ratio larger than 30 dB can be achieved within the angular misalignment of 0.9 degree. The aforementioned unique properties make this novel SP coupler attractive for the resonant fiber optic gyro.

© 2013 IEEE

PDF Article
More Like This
Effect of Fresnel reflections in a hybrid air-core photonic-bandgap fiber ring-resonator gyro

Yuchao Yan, Huilian Ma, Linglan Wang, Hanzhao Li, and Zhonghe Jin
Opt. Express 23(24) 31384-31392 (2015)

Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber

Hongchen Jiao, Lishuang Feng, Kai Wang, Ning Liu, and Zhaohua Yang
Opt. Express 25(22) 27806-27817 (2017)

Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber

Yuchao Yan, Huilian Ma, and Zhonghe Jin
Opt. Express 23(3) 2002-2009 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved