Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 5,
  • pp. 768-778
  • (2013)

A High-Accuracy Multidomain Legendre Pseudospectral Frequency-Domain Method With Penalty Scheme for Solving Scattering and Coupling Problems of Nano-Cylinders

Not Accessible

Your library or personal account may give you access

Abstract

A new multidomain pseudospectral frequency-domain (PSFD) method based on the Legendre polynomials with penalty scheme is developed for numerically modeling electromagnetic wave scattering problems. The primary aim of the proposed method is to more accurately analyzing scattering and coupling problems in plasmonics, in which optical waves interact with nanometer-sized metallic structures. Using light scattering by a silver circular cylinder as a first example, the formulated method is demonstrated to achieve numerical accuracy in near-field calculations on the order of 10-9 with respect to a unity field strength of the incident wave with excellent exponentially convergent behavior in numerical accuracy. Then, scattering by a dielectric square cylinder and that by several coupled metallic structures involving circular cylinders, square cylinders, or dielectric coated cylinders are examined to provide high-accuracy coupled near-field results.

© 2012 IEEE

PDF Article
More Like This
Analysis of optical waveguides with ultra-thin metal film based on the multidomain pseudospectral frequency-domain method

Po-Jui Chiang, Yen-Chung Chiang, Nai-Hsiang Sun, and Shi-Xi Hong
Opt. Express 19(5) 4324-4336 (2011)

Full-vectorial modal analysis for circular optical waveguides based on the multidomain Chebyshev pseudospectral method

Rencheng Song, Jianxin Zhu, and Xuecang Zhang
J. Opt. Soc. Am. B 27(9) 1722-1730 (2010)

Application of the pseudospectral method to the finite difference frequency domain method

Tamas Szarvas and Zsolt Kis
J. Opt. Soc. Am. B 36(2) 333-345 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved