Abstract

Unprecedented transistor integration capacity will exist to make computing truly ubiquitous, but the energy consumption will be a major challenge. Compute energy can be reduced by employing near threshold voltage operation, and advances in memory architecture will reduce memory energy. However, energy consumed in data movement over interconnects will become prohibitive. Severe tapering of interconnect bandwidth brings interconnect energy within limit, but potentially hinders the system performance. Hence, a holistic hardware/software codesigned system approach is required.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription