Abstract

Experimental performances analysis of an optical radiofrequency signal mixer based on a semiconductor optical amplifier Mach–Zehnder Interferometer utilizing an all-optical sampling method is presented. An optical pulse source generating 21-ps width pulses at a repetition rate of 7.8 GHz samples an intensity-modulated optical carrier carrying an electrical subcarrier at the intermediate frequency 1 GHz. The efficiency of the all-optical radiofrequency mixer is evaluated in terms of mixing conversion gain and third-order input intercept point. The conversion gain varies from 14.4 dB to 20.3 dB according to the chosen frequency. In addition, the electrical subcarrier modulated by a Quadrature phase shift keying (QPSK) and a 16-quadrature amplitude modulation (QAM) signal at a data rate of 1 MSymb/s has been frequency up-converted up to 40 GHz with an error vector magnitude of 11.68% for the QPSK modulation and 10.94% for the 16-QAM.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription