Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 22,
  • pp. 3546-3555
  • (2013)

Digital Nonlinear Compensation Based on the Modified Logarithmic Step Size

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we investigate the digital backward propagation (DBP) nonlinear compensation (NLC) based on the modified logarithmic step size distribution. Different from regular constant step size, we use the logarithmic non-constant step size distribution in DBP. The compensation performance is investigated with Nyquist wavelength division multiplexing (NWDM) system. The modified logarithmic step size distribution is proposed and studied by introducing an attenuation adjusting factor $k$ . As a proof of the concept, the optimal $k$ factor is studied by simulation results with the noise figure, the input power, the transmission distance, the fiber attenuation, the span length, the step number per span, the dispersion value, the baud rate, the calculated sub-channels, the pulse shape and the modulation formats. Reduced complexity and improved performance is observed by using the modified logarithmic step size distribution. Compared with constant step nonlinear compensation, the improved bit-error-ratio (BER) performance and $Q$ -value for our scheme is demonstrated by 3 $\times$ 50-Gb/s NWDM polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal with 1120-km single-mode fiber-28 (SMF-28) transmission and Erbium-doped fiber amplifier (EDFA)-only amplification.

© 2013 IEEE

PDF Article
More Like This
Joint intra and inter-channel nonlinear compensation scheme based on improved learned digital back propagation for WDM systems

Xinyu Chi, Chenglin Bai, Fan Yang, Qi Qi, Ruohui Zhang, Hengying Xu, Lishan Yang, Wanxiang Bi, Tianchi Chen, and Shunchang Bai
Opt. Express 32(4) 5095-5116 (2024)

Fast fiber nonlinearity compensation method for PDM coherent optical transmission systems based on the Fourier neural operator

Junling Huang, Anlin Yi, Lianshan Yan, Xingchen He, Lin Jiang, Hui Yang, Bin Luo, and Wei Pan
Opt. Express 32(2) 2245-2256 (2024)

Nonlinear compensation and crosstalk suppression for 4 × 160.8Gb/s WDM PDM-QPSK signal with heterodyne detection

Junwen Zhang, Jianjun Yu, Nan Chi, Ze Dong, and Xinying Li
Opt. Express 21(8) 9230-9237 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.