Abstract

A variable-precision distributed arithmetic (VPDA) multi-input multi-output (MIMO) equalizer is presented to reduce the size and dynamic power of 112 Gb/s dual-polarization quadrature phase-shift-keying (DP-QPSK) coherent optical communication receivers for 80 km metro applications. The VPDA MIMO equalizer compensates for channel dispersion as well as various non-idealities of a time-interleaved successive approximation register (SAR) based analog-to-digital converter (ADC) simultaneously by using a least mean square (LMS) algorithm. As a result, area-hungry analog domain calibration circuits are not required. In addition, the VPDA MIMO equalizer achieves 45% dynamic power reduction over fixed resolution counterparts by utilizing the minimum required resolution for the equalization of each dispersed symbol.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription