Abstract

Ethernet Ring Protection (ERP) has recently emerged to provide protection switching for Ethernet ring topologies with sub-50 ms failover capabilities. ERP's promise to provide protection in mesh packet transport networks positions Ethernet as a prominent competitor to conventional SONET/SDH and as the technology of choice for carrier networks. Higher service availability, however, in ERP has been challenged by the issue of network partitioning and contention for shared capacity caused by concurrent failures. In this paper, we show that in a network designed to withstand single-link failure, the service availability, in the presence of double link failures, depends on the designed ERP scheme, i.e., the RPL placement as well as the selection of ring hierarchy. Therefore, we present a study for characterizing service outages and propose a design method which strikes a balance between capacity requirement and service availability (i.e., the number of service outages resulting from concurrent failures). We observe that through effective design, remarkable reduction in service outages is obtained at a modest increase in capacity deployment.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription