Abstract

We present simulation of nonparaxial waves in multiple reflecting structures, using a recently proposed bidirectional method based on a finite difference split-step nonparaxial scheme. Simulation of finite beams in volume Bragg gratings, through high reflection coatings and tilted fiber Bragg gratings are presented. Comparisons are made with experimental, analytical, and other numerical methods to demonstrate its accuracy and efficiency. The method is noniterative and the propagation matrices are evaluated analytically making it computationally very efficient. The method has very high accuracy for modeling reflection of nonparaxial beams and can simulate large longitudinal index discontinuities efficiently without using special modifications.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription