Abstract

We report the first superchannel field experiment where two multicarrier signals at 450 Gb/s and 1.15 Tb/s are copropagated with 112-Gb/s neighbors over 45 × 79.1 km spans of field-installed fiber with erbium-doped fiber amplifiers after each span. The superchannels use zero-guard interval all-optical orthogonal frequency-division multiplexing, with each optically generated subcarrier modulated by dual-polarization quadriphase-shift-keying signals (DP-QPSK). The heterogeneous data-rate channels are aggregated using wavelength selective switch in a flexible grid wavelength-division multiplexing architecture. The net spectral efficiencies of the channels vary from 2 b/s/Hz for the 112-Gb/s channels, to 3.33 b/s/Hz for the 1.15-Tb/s superchannel. We demonstrate that any of the signals can be detected using a common filterless digital coherent receiver. In particular, tuning a local oscillator laser midway between two optically generated subcarriers enables the coherent receiver (with proper signal-processing algorithm) to demodulate two subcarriers in one data capture. This allows flexible downconversion across the whole signal band. Our results show that superchannels can coexist harmoniously with 100 G DP-QPSK signals. Even though the superchannels use the same modulation format per subcarrier as the 100 G signals, the absence of guard bands enables higher spectral efficiency that is achievable with single-carrier modulation with minimal sacrifice in reach.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription