Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 30,
  • Issue 12,
  • pp. 1843-1856
  • (2012)

10 Gb/s Indoor Optical Wireless Systems Employing Beam Delay, Power, and Angle Adaptation Methods With Imaging Detection

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose a mobile optical wireless system that employs beam delay adaptation, and makes use of our previously introduced beam angle and power adaptation multibeam spot diffusing configuration in conjunction with an imaging receiver. Our ultimate goal is to improve the bandwidth, reduce the effect of intersymbol-interference, and increase the signal-to-noise ratio (SNR) when the transmitter operates at a higher data rate under the impact of multipath dispersion, background noise, and mobility. A significant reduction in the delay spread can be achieved compared to a conventional diffuse system (CDS) when an imaging receiver replaces a nonimaging receiver at the room's corner, where the delay spread is reduced from 2.4 ns to about 0.35 ns. Our proposed system, beam delay, angle, and power adaptation in a line strip multibeam spot diffusing configuration (BDAPA-LSMS), offers a reduction in delay spread by a factor of more than 10 compared with only the beam angle and power adaptation LSMS. An increase in channel bandwidth from 36 MHz (CDS) to about 9.8 GHz can be achieved when our methods of beam delay, angle, and power adaptation coupled with an imaging receiver are employed. These improvements enhance our system and enable it to operate at a higher data rate of 10 Gb/s. At a bit rate of 30 Mb/s, our proposed BDAPA-LSMS achieves about 50 dB SNR gain over conventional diffuse systems that employ a nonimaging receiver (CDS). Moreover, our simulation results show that the proposed BDAPA-LSMS at a bit rate of 10 Gb/s achieves about 32.3 dB SNR at the worst communication path under the presence of background noise and mobility while achieving a bit error rate below 10<sup>-9</sup>.

© 2012 IEEE

PDF Article
More Like This
Mobile Multigigabit Indoor Optical Wireless Systems Employing Multibeam Power Adaptation and Imaging Diversity Receivers

Fuad E. Alsaadi and Jaafar M.H. Elmirghani
J. Opt. Commun. Netw. 3(1) 27-39 (2011)

Hologram Selection in Realistic Indoor Optical Wireless Systems With Angle Diversity Receivers

Mohammed T. Alresheedi and Jaafar M. H. Elmirghani
J. Opt. Commun. Netw. 7(8) 797-813 (2015)

10  Gbps Mobile Visible Light Communication System Employing Angle Diversity, Imaging Receivers, and Relay Nodes

Ahmed Taha Hussein and Jaafar M. H. Elmirghani
J. Opt. Commun. Netw. 7(8) 718-735 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.