Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 22,
  • pp. 3445-3452
  • (2011)

Arbitrary-Order Full-Vectorial Interface Conditions and Higher Order Finite-Difference Analysis of Optical Waveguides

Not Accessible

Your library or personal account may give you access

Abstract

We derive generalized full-vectorial continuity relations of field derivatives across an abrupt curved interface. Using the Helmholtz wave equation, we can extend the interface conditions by two orders. Repeating the process, we obtain interface conditions of even and odd orders from the zeroth- and first-order interface conditions, respectively, which can be extended to arbitrary orders. The interface conditions combined with Taylor series expansion are applied in higher order full-vectorial finite-difference analysis of several waveguide structures. From effective index convergence analysis of optical fiber modes, the 6-, 15-, and 28-point schemes give second-, fourth-, and sixth-order convergence, respectively. The higher order formulation is also applied to guided mode analysis of photonic crystal fibers and terahertz pipe waveguides, where improved accuracy is obtained when using higher order scheme. Our proposed method allows coarser discretization, which can greatly reduce the computation time and memory. The ultimate accuracy can also be higher due to smaller accumulated roundoff error.

© 2011 IEEE

PDF Article
More Like This
Arbitrary-order interface conditions for slab structures and their applications in waveguide analysis

Yih-Peng Chiou and Cheng-Han Du
Opt. Express 18(5) 4088-4102 (2010)

Full-vectorial finite-difference analysis of microstructured optical fibers

Zhaoming Zhu and Thomas G. Brown
Opt. Express 10(17) 853-864 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.