Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 1,
  • pp. 3-14
  • (2011)

IP Over WDM Networks Employing Renewable Energy Sources

Not Accessible

Your library or personal account may give you access

Abstract

With network expansion, the energy consumption and CO<sub>2</sub> emissions associated with networks are increasing rapidly. In this paper we propose an approach for energy minimization in IP over WDM networks and furthermore propose the use of renewable energy to further reduce the CO<sub>2</sub> emissions at a given energy consumption level. We develop a Linear Programming (LP) model for energy minimization in the network when renewable energy is used and propose a novel heuristic for improving renewable energy utilization. Compared with routing in the electronic layer, routing in the optical layer coupled with renewable energy nodes significantly reduces the CO<sub>2</sub> emission of the IP over WDM network considered by 47% to 52%, and the new heuristic introduced hardly affects the QoS. In order to identify the impact of the number and the location of nodes that employ renewable energy on the non-renewable energy consumption of whole network, we also constructed another LP model. The results show that the nodes at the center of the network have more impact than other nodes if they use renewable energy sources. We have also investigated the additional energy savings that can be gained through Adaptive Link Rate (ALR) techniques where different load dependent energy consumption profiles are considered. Our optimized REO-hop routing algorithm with renewable energy and ALR results in a maximum energy saving of 85% (average of 65%) compared to a current network design where all nodes are statically dimensioned for the maximum traffic in terms of IP ports and optical layer and hence consume power accordingly. Furthermore, when all the nodes have access to typical levels of renewable power we show that the associated reduction in non-renewable energy consumption reduces the network’sCO<sub>2</sub> emissions by 97% peak, 78% average.

© 2010 IEEE

PDF Article
More Like This
Energy-Minimized Design for IP Over WDM Networks

Gangxiang Shen and Rodney S. Tucker
J. Opt. Commun. Netw. 1(1) 176-186 (2009)

Design for Energy-Efficient IP Over WDM Networks With Joint Lightpath Bypass and Router-Card Sleeping Strategies

Yunlei Lui, Gangxiang Shen, and Weidong Shao
J. Opt. Commun. Netw. 5(11) 1122-1138 (2013)

Energy Efficient Survivable IP-Over-WDM Networks With Network Coding

Mohamed Musa, Taisir Elgorashi, and Jaafar Elmirghani
J. Opt. Commun. Netw. 9(3) 207-217 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.