Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 28,
  • Issue 8,
  • pp. 1261-1277
  • (2010)

Omnipresent Ethernet—Technology Choices for Future End-to-End Networking

Not Accessible

Your library or personal account may give you access

Abstract

We propose an all-Ethernet end-to-end communication framework for the access, metro and core networks called Omnipresent Ethernet (or OEthernet). The proposed hierarchy is based on two inherent assumptions: (1) present manner of interconnection in carrier networks from a graph theory perspective and (2) recent advances in Carrier Ethernet. The OEthernet approach makes good use of the advances of Ethernet from the LAN to the MAN and now to carrier networks, while inducing pragmatic traffic requirements for end-to-end communication. The OEthernet concept is a new end-to-end communication paradigm focused in particular to meet emerging service needs taking business requirements into consideration. The proposed solution is based on concepts of binary routing, source routing, logical topology abstraction and tagged connection oriented flow provisioning leading to a new communication hierarchy that facilitates end-to-end communication. This end-to-end solution uses Ethernet and its associated advances as an enabler technology. We define the advantages, the technological choices and the traffic assumptions for this end-to-end Ethernetworking hierarchy. Following which we postulate simple algorithms for converting an arbitrary network to one which facilitates source routing and binary routing—two concepts that are instructive in our solution. Subsequent to the conceptual explanation the engineering aspects of the implementation are detailed. In particular end-to-end communication using our solution, in the presence and absence of IP as a network layer is showcased. The solution is analyzed from a utilization and delay perspective. An optical implementation of the end-to-end OEthernet solution for enterprise networks is also proposed. Included is a new node architecture leading to a class of optical networking called O-BiS or Optical Bit-Switching. Comparison with existing approaches as well as positioning with respect to all-IP networks is then showcased. Triple Play services are simulated over our networking solution to validate our results.

© 2010 IEEE

PDF Article
More Like This
Scalable Segment Routing—A New Paradigm for Efficient Service Provider Networking Using Carrier Ethernet Advances

Sarvesh Bidkar, Ashwin Gumaste, Puneet Ghodasara, Annirudha Kushwaha, Jianping Wang, and Arun Somani
J. Opt. Commun. Netw. 7(5) 445-460 (2015)

Developing and Deploying a Carrier-Class SDN-Centric Network Management System for a Tier 1 Service Provider Network

Saurabh Hote, Puneet Ghodasara, Tamal Das, Aniruddha Kushwaha, Sidharth Sharma, Sarvesh Bidkar, and Ashwin Gumaste
J. Opt. Commun. Netw. 9(8) 711-729 (2017)

Optical Networking Technologies That Will Create Future Bandwidth-Abundant Networks [Invited]

Ken-ichi Sato and Hiroshi Hasegawa
J. Opt. Commun. Netw. 1(2) A81-A93 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.