Abstract

We analyze an accurate approach based on the Simultaneous Transverse Resonance Diffraction (STRD) modeling. The new method allows to evaluate by means of transmission line circuits the near field generated by a metallic wedge excited by an optical source. The STRD technique is implemented in the rigorous multipole expansion of the Green's function (MEG) theory by providing a modeling of material permittivity detection for wireless micro/nano systems. A good agreement between finite element method (FEM), finite difference time domain (FDTD) and STRD/MEG results is found. Requiring a low computational cost, the proposed modeling is suited for electromagnetic simulators.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription