Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 28,
  • Issue 22,
  • pp. 3258-3265
  • (2010)

An Ameliorated Phase Generated Carrier Demodulation Algorithm With Low Harmonic Distortion and High Stability

Not Accessible

Your library or personal account may give you access

Abstract

A novel ameliorated phase generated carrier (PGC) demodulation algorithm based on arctangent function and differential-self-multiplying (DSM) is proposed in this paper. The harmonic distortion due to nonlinearity and the stability with light intensity disturbance (LID) are investigated both theoretically and experimentally. The nonlinearity of the PGC demodulation algorithm has been analyzed and an analytical expression of the total-harmonic-distortion (THD) has been derived. Experimental results have confirmed the low harmonic distortion of the ameliorated PGC algorithm as expected by the theoretical analysis. Compared with the traditional PGC-arctan and PGC-DCM algorithm, the ameliorated PGC algorithm has a much lower THD as well as a better signal-to-noise-and-distortion (SINAD). A THD of below 0.1% and a SINAD of 60 dB have been achieved with PGC modulation depth (<i>C</i> value) ranges from 1.5 to 3.5 rad. The stability performance with LID has also been studied. The ameliorated PGC algorithm has a much higher stability than the PGC-DCM algorithm. It can keep stable operations with LID depth as large as 26.5 dB and LID frequency as high as 1 kHz. The system employing the ameliorated PGC demodulation algorithm has a minimum detectable phase shift of 5 μrad/√Hz @ 1 kHz, a large dynamic range of 120 dB @ 100 Hz, and a high linearity of better than 99.99%.

© 2010 IEEE

PDF Article
More Like This
Improved PGC demodulation algorithm for fiber optic interferometric sensors

Mingda Zhu, Xinxin Wang, Jiaying Chang, and Haoyu Zhou
Opt. Express 32(2) 2162-2178 (2024)

Improved PGC demodulation algorithm to eliminate modulation depth and intensity disturbance

Yangtaozi Li, Hong Gao, Liguo Zhao, Zhipeng Fu, Juan Zhang, Zhen Li, and Xueguang Qiao
Appl. Opt. 61(19) 5722-5727 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved