Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 28,
  • Issue 21,
  • pp. 3162-3175
  • (2010)

Formulation of a Complex Mode Solver for Arbitrary Circular Acoustic Waveguides

Not Accessible

Your library or personal account may give you access

Abstract

There has been a resurgence of interests in stimulated Brillouin scattering (SBS) in optical fibers recently. This is largely due to the need to overcome SBS for power scaling of single frequency fiber lasers. Complex acoustic waveguide designs have been proposed for SBS suppression in optical fibers. There is, therefore, a strong need for finding acoustic modes in complex acoustic waveguides. Furthermore, leaky acoustic modes are often ignored in recent works on SBS in optical fiber. Many leaky acoustic modes involved in SBS in optical fibers often have comparable losses to guided acoustic modes. The losses of both guided acoustic modes and many leaky acoustic modes are dominated by the extremely high material loss of acoustic waves in the GHz region in optical fibers. Therefore, it is very important to consider these leaky acoustic modes in SBS in optical fibers, especially for acoustic antiguide designs used for SBS suppressions, where those leaky acoustic modes are often responsible for the peak SBS gain and consequently SBS threshold. Even for optical fibers with guided acoustic waveguide, fine features in SBS gain spectra can be better understood by studying the additional contributions from leaky acoustic modes. In this work, we report, for the first time, a complex vector acoustic mode solver capable of finding both guided and leaky acoustic modes in arbitrary circular acoustic waveguides. The validity of the mode solver is verified by comparing simulated SBS gain spectra in two optical fibers, one with acoustic guide and one with acoustic antiguide, to measured ones. This acoustic mode solver can be used to provide highly accurate SBS gain spectrum in optical fibers. It will be a critical tool in optical fiber designs for SBS suppressions and enhancements. It will also be very important tool for understanding fine spectral details of SBS in optical fibers.

© 2010 IEEE

PDF Article
More Like This
Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers

Seongwoo Yoo, Christophe A. Codemard, Yoonchan Jeong, Jayanta K. Sahu, and Johan Nilsson
Appl. Opt. 49(8) 1388-1399 (2010)

Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides

Christopher G. Poulton, Ravi Pant, and Benjamin J. Eggleton
J. Opt. Soc. Am. B 30(10) 2657-2664 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.