Abstract

We demonstrate theoretically a tunable optical ring resonator incorporating an asymmetric Mach–Zehnder interferometer (MZI) and two phase shifters. The optimal resonance state of the ring resonator with different geometries can be achieved by tuning the two embedded phase shifters. Distinct intensity and phase responses and transmission spectra characteristics are newly observed by setting different structural parameters such as the asymmetrical path lengths of the waveguides and the coupling ratio of the directional couplers in the MZI. The performance characteristics related to the radius of the ring cavity and the propagation losses in the waveguides are also discussed. At optimal resonance, it is shown that sharp intensity response and tunable narrow-bandwidth spectra can be achieved especially for resonators with a highly asymmetrical configuration. Such device has a potential in sensing, switching and filtering applications.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription