Abstract

We present the theoretical study of a novel highly sensitive, miniaturized, integrated optic refractive index sensor based on a Au-Ag surface grating. The grating is considered to be made of alternate layers of equi-thick Au and Ag regions along the direction of propagation, on the surface of the waveguide. Due to the same thickness of both the metals, the surface plasmon polaritons (SPP) for both metals have their field maxima at the same transverse distance, leading to an increased modal overlap in the grating region and hence a reduced grating length. An exact coupled-mode-theory based on the local mode matching has been used to analyze the mode coupling between the guided mode and the SPP. It has been shown that the proposed design requires nearly one fourth of the grating length as compared to the corrugated metal grating for the same metal thickness. Further, for co-propagating mode coupling (LPG based sensor) the structure is found to be maximum sensitive at an optimum metal thickness, however, such an optimum metal thickness does not exist for counter-propagating coupling (FBG based sensor).

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription