Abstract

We present simulation results on the propagation characteristics of active plasmonic waveguides at 1.55 $\mu$m wavelength based on semiconductors as the active gain media. Three waveguide structures were investigated: metal rib, metal-semiconductor-metal (MSM), and triangular metal groove. In all three structures, we observed strong plasmon mode confinement with nanoscale spot-sizes and corresponding simulated gain values compatible with existing semiconductor technology. We show the effect of systematic modification of waveguide geometry on the required gain for achieving lossless propagation in all the three plasmonic waveguide structures. We demonstrate that lossless propagation with subwavelength spot sizes well below the diffraction limit of light can be obtained by controlling the geometrical parameters of the proposed waveguides.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription