Abstract

Reconfiguration applications based on reconfigurable devices present new computational paradigms since, by increasing the reconfiguration frequency of reconfigurable devices, their activity and performance can be improved dramatically. Recently, Optically Reconfigurable Gate Arrays (ORGAs) with a holographic memory were developed. They realize rapid reconfigurations and numerous reconfiguration contexts. Furthermore, Optically Differential Reconfigurable Gate Arrays (ODRGAs) have been developed to accelerate optical reconfigurations of conventional ORGAs. However, fast configuration experiments under multiple contexts exploiting the ODRGA architecture have never been reported. Therefore, this paper presents a four-context ODRGA system and experimental results demonstrating its fast reconfiguration. The advantage of the ODRGA architecture is discussed based on those results.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription