Abstract

With the help of an improved finite-difference (FD) formulation, we investigate the field behaviors near the corners of simple dielectric waveguides and the propagation characteristics of a slant-faceted polarization converter. The formulation is full-vectorial, and it takes into consideration discontinuities of fields and their derivatives across the abrupt interfaces. Hence, the limitations in conventional FD formulation are alleviated. In the first investigation, each corner is replaced with a tiny arc rather than a really sharp wedge, and nonuniform grids are adopted. Singularity-like behavior of the electric fields emerge as the arc becomes smaller without specific treatment such as quasi-static approximation. Convergent results are obtained in the numerical analysis as compared with results from the finite-element method. In the second investigation, field behaviors across the slanted facet are incorporated in the formulation, and hence the staircase approximation in conventional FD formulation is removed to get better modeling of the full-vectorial properties.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription