Abstract

The influence of p-type and n-type doping on the optical characteristics of a quantum-dot semiconductor optical amplifier (SOA) is studied using a rate equation model that takes into account the effect of the multidiscrete energy levels and the charge neutrality relation. Our calculations show that the amplifier optical gain can be greatly enhanced through p-type doping where the doping concentration should not exceed the certain level. We find that increasing the acceptor concentration increases the unsaturated optical gain but at the same time decreases the saturation density and the effective relaxation lifetime. Also our calculation reveals that the use of p-type doping will be associated with an increase in the transparency current where the increase in the transparency current depends on the incident photon energy. On the other hand, we find that it is possible to increase the saturation density and enhance the linearity of the SOA by using n-type doping.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription