Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 20,
  • pp. 3434-3442
  • (2008)

Modeling and Analysis of the Effect of Noise on an Edge Filter Based Ratiometric Wavelength Measurement System

Not Accessible

Your library or personal account may give you access

Abstract

Theoretical modeling, analysis, and experimental investigation of effect of noise on an edge filter based ratiometric wavelength measurement system have been carried out. A basic noise model for a ratiometric wavelength measurement system which considers both optical and electrical noise is presented. The ratio response of the system has been theoretically modeled considering the limited signal-to-noise ratio (SNR) of source and noise of the receiver circuit and experimentally verified using a macrobend fiber edge filter based ratiometric system. It is shown both theoretically and experimentally that increasing the slope of the edge filter is not necessarily an efficient solution to increasing the resolution of the system and the effect of noise must be accounted for. The resolution of the system changes with wavelength, and an optimization of slope of the ratio of the system is necessary to determine the best possible resolution for a wider wavelength range. In the demonstrated example, we have shown that for systems with slopes of 0.16, 0.22, and 0.31 dB/nm, one can achieve 10-pm resolution for a range of 36, 22, and 16 nm, respectively, starting from 1500 nm in the presence of receiver noise at $-$10-dBm input power and with an optical signal SNR of 50 dB.

© 2008 IEEE

PDF Article
More Like This
Resolution investigation of a ratiometric wavelength measurement system

Qian Wang, Ginu Rajan, Pengfei Wang, and Gerald Farrell
Appl. Opt. 46(25) 6362-6367 (2007)

Study of transmission response of edge filters employed in wavelength measurements

Qian Wang, Gerald Farrell, and Thomas Freir
Appl. Opt. 44(36) 7789-7792 (2005)

Study of the effect of source signal bandwidth on ratiometric wavelength measurement

Qiang Wu, Yuliya Semenova, Ginu Rajan, Pengfei Wang, and Gerald Farrell
Appl. Opt. 49(29) 5626-5631 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.