Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 16,
  • pp. 2899-2908
  • (2008)

Reconfigurable Dispersion Equalizer Based on Phase-Apodized Fiber Bragg Gratings

Not Accessible

Your library or personal account may give you access

Abstract

We present a novel dispersion equalizer design for the compensation of chromatic dispersion and chromatic dispersion slope in WDM systems. The device is based on a cascade of complex quasi-periodic chirped fiber Bragg gratings. We show that the use of a low chirp results in the distribution of the resonating cavities along the optical fiber length, which allows reconfiguration of the spectral characteristics by the application of a temperature profile. This paper exposes in detail the numerical techniques used in the optimization of the fiber Bragg grating filters taking into account fabrication imperfections. We present a specific design for a 32-channel dispersion equalizer for 10 Gbit/s and a 50-GHz channel spacing. We examine the spectral characterization of a device fabricated using a phase-apodized mask for various settings of the chromatic dispersion profile. We demonstrate a tuning range of ± 800 ps/nm over a bandwidth of 30 GHz. On average, the standard deviation of the phase ripple was below 0.1 rad. Finally, we evaluate the performance of this device by bit error rate measurements.

© 2008 IEEE

PDF Article
More Like This
Design and fabrication of an apodization profile in linearly chirped fiber Bragg gratings for wideband > 35 nm and compact tunable dispersion compensator

Shin-ichi Wakabayashi, Asako Baba, Akihiro Itou, and Jingo Adachi
J. Opt. Soc. Am. B 25(2) 210-217 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.