Abstract

The performance of degree of polarization (DOP) is investigated as a control signal in polarization-mode dispersion (PMD) compensation systems aided by polarization scrambling. The relation between the input and output polarization states of a signal propagating through a polarization scrambler and a PMD-induced optical fiber is described by a 3 x 3 Stokes transfer matrix. The average DOP of the output signal over a period of polarization scrambling is derived as an alternative to the conventional DOP-based control signal, i.e., minimum DOP. In the presence of first- and all-order PMDs, the performance of the average and minimum DOPs in monitoring of differential group delay (DGD) for different data formats (i.e., RZ and NRZ) is evaluated. The performance of the two control signals are further investigated by calculating the outage probability of a feedforward first-order PMD compensation system. The results show that the average DOP outperforms the minimum DOP and also gives a wider DGD monitoring range.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription