Abstract

Numerical analysis and experimental verification of the ultra-broadband amplified spontaneous emissions (ASEs) generated by ${\rm Cr}^{4+}{:}{\rm YAG}$ crystal fibers are presented. Milliwatt ASE was obtained from a double-clad 25-$\mu$m-core fiber. Results of the experimental ASE power measurements and the composition analysis using electron probe micro-analyzer were used to determine the absorption, emission, and excited-state absorption cross sections of pump and signal of the crystal fibers. The numerical analysis showed that the ASE output power is improved by reducing the fiber core diameter down to several micrometers despite of the increased consumption in excited-state absorption of pump. A comparison of the cross sections between those in literature and this work indicates that the crystal fiber has good crystal and optical qualities using the laser heated pedestal growth method. The large pump absorption of the ${\rm Cr}^{4+}{:}{\rm YAG}$ crystal fiber limits its useful length. With such short fiber length, the ASE lights can not acquire enough gain. The ASE efficiency can be further improved by using bi-direction and cladding pump structure to increase the crystal fiber length and incorporating a high ASE reflector at the input end of the crystal fiber. The ${\rm Cr}^{4+}{:}{\rm YAG }$ crystal fiber has a potential for applying to ultra-broadband ASE light source in wavelength division multiplexing network.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription