Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 6,
  • pp. 1621-1628
  • (2007)

A Modulator Design Methodology Minimizing Power Dissipation in a Quantum Well Modulator-Based Optical Interconnect

Not Accessible

Your library or personal account may give you access

Abstract

There is a strong need for a methodology that minimizes total power, which inherently includes device design, for short-distance optical link applications (chip-to-chip or board-to-board communications). We present such a power optimization methodology for a modulator-based optical link, where we do a full 3-D modulator parameter optimization, keeping the power of the entire link in mind. We find for low bit rates (10 Gb/s) that the optimum operational voltage for the modulator was within the supply voltage at the 65-nm technology node. At higher bit rates, the optimum voltage is found to increase and go beyond the stipulated supply voltage. In such a case, a suboptimum operation at the supply voltage incurs a 46% power penalty at 25 Gb/s. Having obtained the optimum modulator design and operation parameters and the corresponding total link power dissipation, we examine the impact of device and system parameters on the optimization. We find that a smaller device capacitance is an efficient solution to push the optimum swing voltage to be within the supply voltage. This is feasible using monolithically integrated Ge-based complementary-metal–oxide–semiconductor-compatible modulator and metal–semiconductor–metal photodetectors.

© 2007 IEEE

PDF Article
More Like This
The suitability of SiGe multiple quantum well modulators for short reach DWDM optical interconnects

Rohan D. Kekatpure and Anthony Lentine
Opt. Express 21(5) 5318-5331 (2013)

Performance-based adaptive power optimization for digital optical interconnects

Xiaoqing Wang, Fouad Kiamilev, George C. Papen, Jeremy Ekman, Ping Gui, Michael J. McFadden, Joseph C. Deroba, Michael W. Haney, and Charles Kuznia
Appl. Opt. 44(29) 6240-6252 (2005)

Energy consumption in optical modulators for interconnects

David A. B. Miller
Opt. Express 20(S2) A293-A308 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.