Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 9,
  • pp. 3280-
  • (2006)

Optical Orthogonal Code Construction Using Rejected Delays Reuse for Increasing SubWavelength-Switching Capacity

Not Accessible

Your library or personal account may give you access

Abstract

Using a mathematical proof, the authors establish that in element-by-element greedy algorithms based on extended set representation of optical orthogonal codes (OOCs), smaller delay elements rejected during a construction step can be accepted in later steps. They design a novel algorithm that exploits this property and call it the rejected delays reuse (RDR) greedy algorithm. They show that employing the RDR method leads to code lengths that are shorter than those achieved for OOCs constructed using the classical greedy algorithm for the same code weight and the same number of simultaneous codes constraints. They then define a quantitative measure (factor) for OOCs efficiency based on its ability to expand subwavelength-switching capacity. They call this factor the expansion efficiency factor. They use this factor to show that reducing the code length, for the same code constraints, enhances the capacity of subwavelength optical code switched networks.

© 2006 IEEE

PDF Article
More Like This
Design of efficient all-optical code-division multiplexing systems supporting multiple-bit-rate and equal-bit-rate transmissions

Jian-Guo Zhang, Giorgio Picchi, and A. B. Sharma
Appl. Opt. 39(14) 2264-2277 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved