Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 7,
  • pp. 2602-
  • (2006)

Interleave Filter Based on Coherent Optical Transversal Filter

Not Accessible

Your library or personal account may give you access

Abstract

The principle of the transversal interleave filter previously proposed as a novel class of interleave filter is described. The principle of a conventional 1 × 1 coherent optical transversal filter is reviewed. Then, the fundamental operating principle and the three design conditions required for the novel interleave filter are explained. As examples, three types of filter design, namely 1) a general/transposed design; 2) an asymmetric design; and 3) a symmetric design, are presented, and their interleave filter characteristics are discussed. The designed interleave filters with a free spectral range of 100 GHz was fabricated using silica-based planar lightwave circuit (PLC) technology. The asymmetric design achieved a wide 3-dB passband width of 55 GHz, whereas an ordinary lattice-form interleave filter could not realize a 3-dB passband width larger than 50 GHz because of the halfband property. A small polarization-dependent wavelength shift of 0.01 nm is demonstrated by inserting a single half waveplate in the middle of the circuit. The general/transposed and symmetric designs realized a practical interleave filter with a boxlike transmission spectrum and low chromatic dispersion. The two-stage interleave filter formed by cascading the general and transposed designs has the advantages of a low crosstalk of less than -46 dB and a wide 20-dB stopband width of 40 GHz, whereas the single-stage symmetric design has an extremely small chromatic dispersion of within ±5 ps/nm. In addition, the design concept to realize a 1 × N transversal interleave filter is extended.

© 2006 IEEE

PDF Article
More Like This
Design and fabrication of an optical interleaver with cascaded multimode interference couplers

Zhujun Wan, Yaming Wu, Jing Yuan, and Fengguang Luo
Appl. Opt. 46(31) 7587-7589 (2007)

Hybrid transversal-lattice optical filters

M. E. Marhic
Opt. Express 10(21) 1190-1194 (2002)

Interleaved optical coherence tomography

Hee Yoon Lee, Helge Sudkamp, Tahereh Marvdashti, and Audrey K. Ellerbee
Opt. Express 21(22) 26542-26556 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.