Abstract

In the case of multiple fringes and complex frequency measurements, the frequency of the output signal changes rapidly when the vibration changes and frequency breakdown takes place at the turning point. For a particular vibration signature containing many frequency components at different time intervals, it is often difficult to trace the direction of the vibration as well as individual frequency peaks. In such cases, advanced signal-processing scheme is necessary to decode the vibration signature. This paper investigates the data interrogation technique for multifrequency and complex signals of surface vibration obtained from an extrinsic Fabry-Pérot interferometric sensor. In this paper, wavelet transform (WT)-based signal processing methodology has been employed to count of optical fringes with special reference to signals having subfringes. A WT-based tool has also been developed for unambiguous identification of frequency components from a nonsinusoidal vibration. The results of such WT-based analyses are presented, and merits as well as demerits of the proposed methods are discussed.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription