Abstract

The optimal design of a polymer-based thermooptic (TO) switch using a total internal reflection (TIR) effect is proposed to improve switching performance. Numerical calculations show that this type of optical switch can achieve an ultrabroad optical bandwidth as well as a low polarization dependent loss. The devices fabricated with different half branch angles consume driving powers from 25 to 66 mW. The switches also show fiber-to-fiber insertion losses at 2.8 dB and polarization dependent losses (PDLs) at 0.2 dB. The measured rising and falling times are 1.5 and 2 ms, respectively. The optical bandwidth of the devices, which is limited by the material absorption from the fluorinated polymer, is quite large extending from 630 to 1630 nm.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription