Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 11,
  • pp. 4269-4285
  • (2006)

Modeling and Analysis of the Contribution of Channel Walk-Off to Nondegenerate and Degenerate Four-Wave-Mixing Noise in RZ-OOK Optical Transmission Systems

Not Accessible

Your library or personal account may give you access

Abstract

A finite-band noise model for degenerate four-wave mixing (FWM) including channel walk-off in return-to-zero on–off-keying (RZ-OOK) transmission is extended to include nondegenerate FWM (ND-FWM). The model is verified by comparing the results for the noise variance for each type of FWM to split-step-Fourier (SSF) simulations for a 10-Gb/s single span link, and excellent agreement is obtained. A physical interpretation of the walk-off effect on the FWM noise is formulated in terms of intracollision and intercollision interference of the corresponding generated FWM waves. The author shows that the walk-off effect modifies the FWM noise power spectral density only at high frequencies by producing distinct peaks at locations determined by the channel spacing. In principle, the walk-off effect significantly increases the noise variance for both types of FWM before any filtering at the end of fiber. Upon demultiplexing, it is found that the walk-off effect is significant and observable for the degenerate FWM case but is no longer significant for the ND-FWM case. When a sub-bit-rate electrical filter is used in the receiver, the walk-off effect becomes insignificant for all types of FWM. They systematically conclude that the walk-off effect is unimportant for FWM in typical RZ-OOK systems when tight electrical filtering is used. They also illustrate the accuracy of the model for the more general case where more than one FWM tone is coincident on a probe channel by comparing the analytic model to SSF simulations for a five-channel example.

© 2006 IEEE

PDF Article
More Like This
Squeezing of classical noise by nondegenerate four-wave mixing in an optical fiber

M. D. Levenson, R. M. Shelby, and S. H. Perlmutter
Opt. Lett. 10(10) 514-516 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.