Abstract

The small polarization dependence (< 1 dB) of optical components becomes significant in optical multistage interconnection networks. The cumulative effect can ultimately limit physical layer scalability by changing the maximum number of internal nodes that optical packets can traverse error free. It is shown that for nodes based on commercial semiconductor optical amplifier (SOA) switches with polarization-dependent gains of less than 0.35 dB, the maximum number of cascaded nodes changes by as much as 20 nodes, depending on both the packet wavelength and its state of polarization. This deviation in the number of nodes could correspond to a 100-fold decrease in the number of interconnected ports of an optical interconnection network such as the data vortex. This dramatic effect is explained in terms of optical signal-to-noise ratio degradation due to accumulated amplified spontaneous emission noise originating from the SOA device in the node.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription