Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 10,
  • pp. 3635-3645
  • (2006)

Crosstalk-Free Conjugate Networks for Optical Multicast Switching

Not Accessible

Your library or personal account may give you access

Abstract

High-speed photonic switching networks can switch optical signals at the rate of several terabits per second. However, they suffer from an intrinsic crosstalk problem when two optical signals cross at the same switch element. To avoid crosstalk, active connections must be node disjoint in the switching network. In this paper, a sequence of decomposition and merge operations, called conjugate transformation, performed on each switch element to tackle this problem, is proposed. The network resulting from this transformation is called the conjugate network. By using the numbering schemes of networks, the authors prove that if the route assignments in the original network are link disjoint, their corresponding ones in the conjugate network would be node disjoint. Thus, traditional nonblocking switching networks can be transformed into crosstalk-free optical switches in a routine manner. Furthermore, it has been shown that crosstalk-free multicast switches can also be obtained from existing nonblocking multicast switches via the same conjugate transformation.

© 2006 IEEE

PDF Article
More Like This
New Class of Rearrangeable Nonblocking Multicast Free-Space Optical Switches

Abdelbaset S. Hamza, Jitender S. Deogun, and Dennis R. Alexander
J. Opt. Commun. Netw. 8(8) 569-581 (2016)

Minimum-complexity free-space optical nonblocking networks for multicast interconnect applications

Yao Li, Ting Wang, Z. George Pan, and Jacob Sharony
Opt. Lett. 19(8) 515-517 (1994)

Free Space Optical Multicast Crossbar

Abdelbaset S. Hamza, Jitender S. Deogun, and Dennis R. Alexander
J. Opt. Commun. Netw. 8(1) 1-10 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved