Abstract

This paper presents a parametric amplifier configuration that enables real-time monitoring of the net dispersion experienced by a pulse train. Fast detection or fast electronic signal processing is not required. The device exploits cascaded four-wave mixing (FWM) in an optical fiber and exhibits parametric gain and frequency conversion efficiency of more than 18 dB. Dispersion monitoring with 11-ps pulses that have experienced a net dispersion of ± 180 ps/nm are demonstrated. These pulses are similar to those to be used in high-bandwidth (~ 40 Gb/s) communication systems. The device is compatible with 160-Gb/s systems. Parametric amplification within the device enables simultaneous dispersion monitoring, wavelength conversion,and amplification. The monitor can be used in a feedback loop with a tunable dispersion compensator, allowing dispersion to be managed. Equations governing the FWM process are presented; there is good agreement between the simulated and measured results. The equations are further used to understand which of the several FWM processes within the device dominate.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription