Abstract

A new low-cost 10-Gb/s optical receiver module constructed using a novel plastic package is proposed. Passive alignment using a glass V-groove substrate and an edge-illuminated refracting-facet photodiode (RFPD) was employed to reduce cost. Instead of a conventional GaAs IC, a Si-bipolar preamplifier IC was mounted on the package to reduce power consumption. High-speed signal lines with a bandwidth of more than 10 GHz were realized using a three-dimensional electromagnetic-field analysis. For the fabricated module, a 3-dB detection bandwidth of 7.7 GHz and a sensitivity of less than -14 dBm at 10 Gb/s were achieved. To confirm the reliability of the fabricated module, a damp-heat test without bias voltage and a temperature-cycling test were performed. The results show that the optical receiver module, if covered with silicone resin, has the ability to withstand humidity and thermal stress.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription