Abstract

A new family of two-dimensional (2-D) wavelength/time optical orthogonal codes (OOCs) for asynchronous optical code division multiple access (OCDMA) systems is proposed. The construction scheme uses the difference family (DF), which is an assemblage of difference sets in the combinatorial theory. It is proven that the proposed codewords satisfy the correlation properties required for the asynchronous OCDMA systems. The code dimension of the proposed codes is more flexible than that of the conventional 2-D codewords. The performance of the system with the proposed codes is analyzed by using the Markov-chain method. Numerical results show that the bit error rate (BER) has a minimal value given the number of simultaneous users. It is also observed that the maximum number of simultaneous users of the system can be achieved by properly choosing both the code weight and cross correlation of the 2-D OOCs.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription