Abstract

The low-cost and low-electromagnetic-interference (EMI) packaging of optical transceiver modules employing housings of plastic composites are developed and fabricated. Optical transceiver modules fabricated by the plastic composites with transmission rates of 1.25 and 2.5 Gb/s are tested to evaluate the electromagnetic (EM) shielding against emitted radiation from the plastic packaging. The results show that these packaged optical transceiver modules with their high shielding effectiveness (SE) are suitable for use in low-cost and low-EMI Gigabit Ethernet lightwave transmission systems. By comparison of cost, weight, and shielding performance for optical transceiver modules fabricated by the housings of nylon and liquid-crystal polymer with carbon fiber filler composites, woven continuous carbon fiber (WCCF), and nanoscale hollow carbon nanocapulses (HCNCs) epoxy composites, the WCCF composite shows lower cost, lighter weight, and higher EM shielding than the other types of composites. Future studies may develop the low-cost and low-EMI optical transceiver modules using nanoscale HCNCs that have the combination of excellent physical and mechanical properties, light weight, and thinness compared with the conventional fabrication techniques.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription