Abstract

This paper describes an optical transceiver designed for power-efficient connections within high-speed digital systems, specifically for board-and backplane-level interconnections. A 2-Gb/s, four-channel, dc-coupled differential optical transceiver was fabricated in a 0.5-µm complementary metal-oxide-semiconductor (CMOS) silicon-on-sapphire (SoS) process and incorporates fast individual-channel power-down and power-on functions. A dynamic sleep transistor technique is used to turn off transceiver circuits and optical devices during power-down. Differential signaling (using two optical channels per signal) enables self-thresholding and allows the transceiver to quickly return from power-down to normal operation. A free-space optical link system was built to evaluate transceiver performance. Experimental results show power-down and power-on transition times to be within a few nanoseconds. Crosstalk measurements show that these transitions do not significantly impact signal integrity of adjacent active channels.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription