Abstract

Three existing wavelength monitor integrated laser module designs are evaluated. The shortcomings of these designs are resolved by a unique design that eases alignment tasks and greatly enhances the wavelength stability and the wavelength tunability. For example, the wavelength drift over case temperature is 16 times smaller than the best result of previous reports. With the incorporation of thermal compensation, the temperature-induced wavelength drift of the etalon is eliminated. In anticipation, this design enables a worst overall wavelength-drift of 4.41 pm after 25 years of usage to be achieved.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription