Abstract

A novel configuration of an interferometric device, based on a full-cycle full (100%) coupler structure, loaded with a Bragg grating symmetrically placed into the uniform coupler waist, is proposed for use as an optical add-drop multiplexer (OADM) with simultaneously optimized add and drop actions. A general method for designing a suitable Bragg grating for optimal inscription in to the uniform coupler waist is also proposed for use in to the device design and development. The performance of the device is characterized at 40-Gb/s wavelength-division-multiplexing (WDM) networks using theoretical systems simulations and is compared directly with other alternative OADM architectures.

© 2003 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription